
Keeping Your Eye On It All
Queue Manager Monitoring & Auditing

[z/OS & Distributed]

Morag Hughson hughson@uk.ibm.com

Session # 9413

N

O

T

E

S

Monitoring and Auditing WebSphere MQ

This session will provide illustrations and insight on the various techniques and
capabilities available for MQ Administrators to meet "Monitoring" and "Auditing"
demands for WebSphere MQ on all platforms. With the ever increasing demands
to provide system runtime "high availability" along with the need to comply with
the constantly changing internal and external audit demands, this session will
provide information on what can be done from a WebSphere MQ perspective.

Different types of Monitoring

On-line
status

commands

On-line
status

commands

Event
messages

Event
messages

Off-line
accounting

and
statistics

Off-line
accounting

and
statistics

Session
9506

N

O

T

E

S

Different types of Monitoring - Notes

There are several different types of monitoring features in WebSphere MQ. You
will likely use some of each type in order to look after your queue managers. Each
serves a different purpose.

There are immediate, on-line, commands that show the status of resources in the
queue manager, such as queues and channels. These can be useful for
diagnosing problems right now, such why a channel is not moving messages, or
why a queue has a deep current depth.
There are event messages which the queue manager emits when certain
interesting, or note-worthy occurrences happen. These can be programmatically
collected, processed and acted upon.
There are off-line statistics and accounting records cut over longer intervals
accumulating information about the application activity in the queue manager
which can be programmatically collected and post-processed for charge-back or
capacity planning purposes. This is the one area that differs between distributed
platforms and the z/OS platform. There is a whole hour dedicated to z/OS
statistics and accounting in SMF – session 9506. Check it out!

On-line status commands

Queue Manager

Resources
Queues
Channels
Topics

Applications
Connections
Handles
Subscriptions

Available via
MQSC commands
Programmable Command Format (PCF)
MQ Explorer GUI

Starting MQSC for queue manager TEST1.

DISLAY QMSTATUS

N

O

T

E

S

On-line status commands – Notes

Many of the resources in the queue manager have status commands. These
commands show the run-time view of that resource.
There is a status command for the queue manager, although being able to issue
any command of course tells you something about the status of the queue
manager!
There are also status commands for channels, queues and topics, and
commands which show the run-time status of applications currently connected to
the queue manager, and subscriptions currently active in the system.
Some of these status commands have additional data that you can activate. This
additional data is not enabled by default because it requires the capture of time
stamp information to produce and collecting time stamps can be expensive on
some platforms. You enable this additional data using the MONCHL and MONQ
attributes on channels and queues respectively.
These status commands are available using MQSC commands or via PCF (and
thus through the MQ Explorer GUI and other such PCF based tools). In the MQ
Explorer GUI you will find status display available through context menus on a
single object, or from the object folder in the Navigator (left hand pane) for status
of many objects in one view.

Queue Manager Status

“Is the queue manager alive”

PING QMGR command

Existence of particular processes
Does not mean a queue manager can do
anything useful

dspmq control command

qmstatus.ini
Not a reliable way to tell if a queue manager
is running

DISPLAY QMSTATUS command
A summary of the run-time state of
the queue manager

Starting MQSC for queue manager TEST1.

PING QMGR
1 : PING QMGR

AMQ8415: Ping WebSphere MQ Queue Manager command complete.

DISPLAY QMSTATUS ALL
2 : DISPLAY QMSTATUS ALL

AMQ8705: Display Queue Manager Status Details.
QMNAME(TEST1) STATUS(RUNNING)
CONNS(6) CMDSERV(RUNNING)
CHINIT(RUNNING) STANDBY(NOPERMIT)
CURRLOG(S0000000.LOG) RECLOG(S0000000.LOG)
MEDIALOG(S0000000.LOG)

N

O

T

E

S

Queue Manager Status – Notes

The basic question you are trying to determine here is whether the queue manager is alive.
Of course that rather depends on what you mean by “alive”. In my view it means an
application can connect.
One handy to command to remember is PING QMGR. It needs several components to be
working, including an application connecting, in order to complete successfully and so it a
good test of whether the queue manager is open for business. HA scripts have typically
used this to determine the health of a queue manager.
Some people want to test for the existence of particular processes. However, I don’t like
this. Even if amqzxma0 exists, it does not mean the queue manager can do anything useful.
The dspmq control command is also useful as it also does an MQCONN. It is not design to
programmatically use, also the main drawback about translated fields has been solved in
V7.0.1, so it could be used in this way successfully now too.
Some will use the contents of qmstatus.ini file. This is not a reliable method. It will correctly
state if a queue manager is down, but you cannot rely on it if it says a queue manager is
running, as the queue manager may have failed in a way that meant the update to this file
was not able to be made.
The status command for the queue manager, DISPLAY QMSTATUS covers a number of
the run-time parts of the queue manager including the command server and channel
initiator. It indicates details about the log files if you are using linear logging, and notes
whether this is a multi-instance queue manager. The MQ Explorer GUI provides some of the
output from this command in the quick view, and the full output can be displayed using the
context menu on the queue manager and selecting Status->General…

Status of run-time resources

Queues
Run-time information about the queue
Details of each handle currently open on the
queue

Channels
Partner details
Logical UoW details
How much work it has done
State of channel

Topics
Resolution of hierarchically inherited attributes
Publisher Status
Subscriber Status

Starting MQSC for queue manager TEST1.

DISPLAY TPSTATUS('Sports/Football/London') TYPE(TOPIC) ALL
1 : DISPLAY TPSTATUS('Sports/Football/London') TYPE(TOPIC) ALL

AMQ8754: Display topic status details.
TOPICSTR(Sports/Football/London) ADMIN(LONDON.FOOTBALL)
MDURMDL(SYSTEM.DURABLE.MODEL.QUEUE)
MNDURMDL(SYSTEM.NDURABLE.MODEL.QUEUE)
DEFPSIST(NO) DEFPRTY(0)
DEFPRESP(SYNC) DURSUB(YES)
PUB(ENABLED) SUB(ENABLED)
PMSGDLV(ALLDUR) NPMSGDLV(ALLAVAIL)
RETAINED(NO) PUBCOUNT(0)
SUBCOUNT(8) PUBSCOPE(ALL)
SUBSCOPE(ALL)

N

O

T

E

S

Status of run-time resources – Notes

There are status commands allowing the run-time view of various WebSphere MQ
resources to be queried.
For queues, there is DISPLAY QSTATUS command which has two variants. DISPLAY
QSTATUS TYPE(QUEUE) shows overall information about the queue, for example, how
many applications have an input or output handle open on that queue, the depth of the
queue, whether there is any uncommitted work on this queue and when was the last time
the queue was processed either to get or put messages. A second variant, DISPLAY
QSTATUS TYPE(HANDLE) shows more detailed information about each handle that
currently has the queue open, including information about the application that owns the
handle.
For channels, there is DISPLAY CHSTATUS command which shows the run-time
information for each channel instance – remembering of course that there may be multiple
channel instances of the same name in the case of receiver and server-connection
channels. The information displayed includes the details of the partner we are connected to;
any logical unit of work information in the case of queue manager to queue manager
channels; how much work the channel has done; and of course the state of the channel.
For topics, there is DISPLAY TPSTATUS command which has three variants. DISPLAY
TPSTATUS TYPE(TOPIC) shows the resolution of any ASPARENT definitional values.
Topics are defined in a hierarchical structure which we call the topic tree. Any values which
are not specifically set on a topic are inherited from the parent in the topic tree. This
command makes the actual run-time values easy to see without having to display many
different topic objects. Two further variants, DISPLAY TPSTATUS TYPE(PUB) and
TYPE(SUB) show more detailed information about each handle that currently has the topic
open, including the connection ID which can be used with the DISPLAY CONN command to
discover full information about the application that owns the handle.

N

O

T

E

S

Command Examples: Queues and Topics

DISPLAY QSTATUS(Q1) TYPE(QUEUE)
1 : DISPLAY QSTATUS(Q1) TYPE(QUEUE)

AMQ8450: Display queue status details.
QUEUE(Q1) TYPE(QUEUE)
CURDEPTH(5) IPPROCS(0)
LGETDATE(2011-02-28) LGETTIME(14.58.36)
LPUTDATE(2011-02-28) LPUTTIME(14.58.52)
MEDIALOG(S0000000.LOG) MONQ(HIGH)
MSGAGE(29) OPPROCS(1)
QTIME(47076388, 45807040) UNCOM(NO)

DISPLAY QSTATUS(Q1) TYPE(HANDLE)
2 : DISPLAY QSTATUS(Q1) TYPE(HANDLE)

AMQ8450: Display queue status details.
QUEUE(Q1) TYPE(HANDLE)
APPLDESC() APPLTAG(d:\nttools\q.exe)
APPLTYPE(USER) BROWSE(NO)
CHANNEL(SYSTEM.DEF.SVRCONN) CONNAME(127.0.0.1)
ASTATE(NONE) HSTATE(INACTIVE)
INPUT(NO) INQUIRE(NO)
OUTPUT(YES) PID(14608)
QMURID(0.0) SET(NO)
TID(*)
URID(XA_FORMATID[00000000] XA_GTRID[] XA_BQUAL[])
URTYPE(QMGR) USERID(hughson@R820DGM)

DISPLAY TPSTATUS('Sports/Football/London') TYPE(TOPIC) ALL
1 : DISPLAY TPSTATUS('Sports/Football/London') TYPE(TOPIC) ALL

AMQ8754: Display topic status details.
TOPICSTR(Sports/Football/London) ADMIN(LONDON.FOOTBALL)
MDURMDL(SYSTEM.DURABLE.MODEL.QUEUE)
MNDURMDL(SYSTEM.NDURABLE.MODEL.QUEUE)
DEFPSIST(NO) DEFPRTY(0)
DEFPRESP(SYNC) DURSUB(YES)
PUB(ENABLED) SUB(ENABLED)
PMSGDLV(ALLDUR) NPMSGDLV(ALLAVAIL)
RETAINED(NO) PUBCOUNT(0)
SUBCOUNT(8) PUBSCOPE(ALL)
SUBSCOPE(ALL)

DISPLAY TPSTATUS('Sports/Football/London') TYPE(PUB) ALL
2 : DISPLAY TPSTATUS('Sports/Football/London') TYPE(PUB) ALL

AMQ8754: Display topic status details.
TOPICSTR(Sports/Football/London) LPUBDATE(2011-02-28)
LPUBTIME(16:11:50)
ACTCONN(414D51434E54314D41482020202020203FC16B4D20002401)
NUMPUBS(1)

DISPLAY TPSTATUS('Sports/Football/London') TYPE(SUB) ALL
3 : DISPLAY TPSTATUS('Sports/Football/London') TYPE(SUB) ALL

AMQ8754: Display topic status details.
TOPICSTR(Sports/Football/London)
SUBID(414D51204E54314D41482020202020203FC16B4D2000280A)
SUBUSER(hughson) RESMDATE(2011-02-28)
RESMTIME(16:12:49) LMSGDATE(2011-02-28)
LMSGTIME(16:12:51)
ACTCONN(414D51434E54314D41482020202020203FC16B4D20002807)
DURABLE(NO) SUBTYPE(API)
NUMMSGS(4)

N

O

T

E

S

Command Examples: Channels

DISPLAY CHSTATUS(SYSTEM.DEF.SVRCONN) ALL
1 : DISPLAY CHSTATUS(SYSTEM.DEF.SVRCONN) ALL

AMQ8417: Display Channel Status details.
CHANNEL(SYSTEM.DEF.SVRCONN) CHLTYPE(SVRCONN)
BUFSRCVD(9) BUFSSENT(8)
BYTSRCVD(1688) BYTSSENT(1516)
CHSTADA(2011-02-28) CHSTATI(15.30.53)
COMPHDR(NONE,NONE) COMPMSG(NONE,NONE)
COMPRATE(0,0) COMPTIME(0,0)
CONNAME(127.0.0.1) CURRENT
EXITTIME(0,0) HBINT(300)
JOBNAME(0000391000003B14) LOCLADDR()
LSTMSGDA(2011-02-28) LSTMSGTI(15.30.53)
MCASTAT(RUNNING) MCAUSER(hughson)
MONCHL(OFF) MSGS(5)
RAPPLTAG(d:\nttools\q.exe) SSLCERTI()
SSLKEYDA() SSLKEYTI()
SSLPEER() SSLRKEYS(0)
STATUS(RUNNING) STOPREQ(NO)
SUBSTATE(RECEIVE) CURSHCNV(1)
MAXSHCNV(10)

DISPLAY CHSTATUS(NT1MAH.TO.NT2MAH) ALL
2 : DISPLAY CHSTATUS(NT1MAH.TO.NT2MAH) ALL

AMQ8417: Display Channel Status details.
CHANNEL(NT1MAH.TO.NT2MAH) CHLTYPE(SDR)
BATCHES(7) BATCHSZ(50)
BUFSRCVD(8) BUFSSENT(13)
BYTSRCVD(432) BYTSSENT(5509)
CHSTADA(2011-02-28) CHSTATI(15.37.58)
COMPHDR(NONE,NONE) COMPMSG(NONE,NONE)
COMPRATE(0,0) COMPTIME(0,0)
CONNAME(127.0.0.1(1502)) CURLUWID(3DC16B4D10000108)
CURMSGS(0) CURRENT
CURSEQNO(11) EXITTIME(0,0)
HBINT(300) INDOUBT(NO)
JOBNAME(0000397800003634) LOCLADDR(127.0.0.1(1901))
LONGRTS(999999999) LSTLUWID(3DC16B4D10000107)
LSTMSGDA(2011-02-28) LSTMSGTI(15.39.16)
LSTSEQNO(11) MCASTAT(RUNNING)
MONCHL(HIGH) MSGS(11)
NETTIME(110,17) NPMSPEED(FAST)
RQMNAME(NT2MAH) SHORTRTS(10)
SSLCERTI() SSLKEYDA()
SSLKEYTI() SSLPEER()
SSLRKEYS(0) STATUS(RUNNING)
STOPREQ(NO) SUBSTATE(MQGET)
XBATCHSZ(1,1) XMITQ(NT2MAH)
XQTIME(1794,344)

Status of Applications

Application connection
What
Who
UoW details

Application resources
Handles opened on queues, topics and
subscriptions

Subscription details
Same information as in Topic status

Starting MQSC for queue manager TEST1.

DISPLAY CONN(*) WHERE(APPLTYPE EQ USER) TYPE(ALL) ALL
1 : DISPLAY CONN(*) WHERE(APPLTYPE EQ USER) TYPE(ALL) ALL

AMQ8276: Display Connection details.
CONN(3FC16B4D20002461)
EXTCONN(414D51434E54314D4148202020202020)
TYPE(CONN)
APPLTAG(d:\nttools\q.exe)
APPLTYPE(USER) ASTATE(NONE)
CONNOPTS(MQCNO_SHARED_BINDING) USERID(hughson)

OBJNAME() OBJTYPE(TOPIC)
ASTATE(NONE) HSTATE(INACTIVE)
OPENOPTS(MQOO_OUTPUT,MQOO_FAIL_IF_QUIESCING)
TOPICSTR(Sports/Football/London)

N

O

T

E

S

Status of Applications – Notes

DISPLAY CONN provides information about the applications connected to the
queue manager and the handles that they have open. Various other commands
output a connection ID which can be used as input into DISPLAY CONN in order
to find out full details about the application that made the connection in question.
You can find out what the application is, whether client or locally connected for
example; the user id it is running under; and when the last UoW was started –
helpful for diagnosing long running UoWs.
You can also see details of the handles this connection has open. This shows the
same information as DISPLAY QSTATUS and DISPLAY TPSTATUS
TYPE(PUB/SUB) but in a different perspective. Those other commands looked at
the information from the perspective of the resource and who is using the
resources. This command shows the information in the perspective of the
application and what resources it is using. It is useful to know that you can start
from either perspective and get the same information.
DISPLAY SBSTATUS provides the same information about subscriptions as
DISPLAY TPSTATUS TYPE(SUB) but from the perspective of a subscription
rather than the resource, as one subscription may cover a number of topics if it
has been made using a wildcarded string.

N

O

T

E

S

Command Examples: Connections

DISPLAY CONN(*) WHERE(APPLTYPE EQ USER) TYPE(ALL) ALL
1 : DISPLAY CONN(*) WHERE(APPLTYPE EQ USER) TYPE(ALL) ALL

AMQ8276: Display Connection details.
CONN(3FC16B4D20002461)
EXTCONN(414D51434E54314D4148202020202020)
TYPE(CONN)
PID(16932) TID(1)
APPLDESC() APPLTAG(d:\nttools\q.exe)
APPLTYPE(USER) ASTATE(NONE)
CHANNEL() CONNAME()
CONNOPTS(MQCNO_SHARED_BINDING) USERID(hughson)
UOWLOG() UOWSTDA()
UOWSTTI() UOWLOGDA()
UOWLOGTI() URTYPE(QMGR)
EXTURID(XA_FORMATID[00000000] XA_GTRID[] XA_BQUAL[])
QMURID(0.0) UOWSTATE(NONE)

OBJNAME() OBJTYPE(TOPIC)
ASTATE(NONE) HSTATE(INACTIVE)
OPENOPTS(MQOO_OUTPUT,MQOO_FAIL_IF_QUIESCING)
READA(NO)
TOPICSTR(Sports/Football/London)

DISPLAY CONN(*) WHERE(APPLTYPE EQ USER) TYPE(ALL) ALL
1 : DISPLAY CONN(*) WHERE(APPLTYPE EQ USER) TYPE(ALL) ALL

AMQ8276: Display Connection details.
CONN(3FC16B4D20003B01)
EXTCONN(414D51434E54314D4148202020202020)
TYPE(CONN)
PID(17740) TID(3)
APPLDESC() APPLTAG(d:\nttools\q.exe)
APPLTYPE(USER) ASTATE(STARTED)
CHANNEL(SYSTEM.DEF.SVRCONN) CONNAME(127.0.0.1)
CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING)
USERID(hughson) UOWLOG()
UOWSTDA(2011-02-28) UOWSTTI(18.13.53)
UOWLOGDA() UOWLOGTI()
URTYPE(QMGR)
EXTURID(XA_FORMATID[00000000] XA_GTRID[] XA_BQUAL[])
QMURID(0.57) UOWSTATE(ACTIVE)

OBJNAME(Q1) OBJTYPE(QUEUE)
ASTATE(ACTIVE) HSTATE(ACTIVE)
OPENOPTS(MQOO_INPUT_SHARED,MQOO_FAIL_IF_QUIESCING)
READA(NO)

N

O

T

E

S

Command Examples: Subscriptions

DISPLAY SBSTATUS('SportsWriter') ALL
48 : DISPLAY SBSTATUS('SportsWriter') ALL

AMQ8099: WebSphere MQ subscription status inquired.
SUB(SportsWriter)
SUBID(414D51204E54314D41482020202020203FC16B4D20004604)
SUBUSER(hughson) RESMDATE(2011-02-28)
RESMTIME(19:04:48) LMSGDATE(2011-02-28)
LMSGTIME(19:05:36)
ACTCONN(414D51434E54314D41482020202020203FC16B4D20004601)
DURABLE(NO) NUMMSGS(1)
SUBTYPE(API)

WebSphere MQ Event Messages

Event Messages for Auditing
Security Failures

Commands Issued

Configuration Changes

Event Messages for Monitoring
Starts and Stops of resources

Starts and Stops of Channels

Channel errors

Application errors using resources

Performance of message processing

Servicing of queues

Depth of queues

N

O

T

E

S

WebSphere MQ Event Messages – Notes

When WebSphere MQ needs to emit information it often does so in the form of
event messages. Several of the auditing features in WebSphere MQ make use of
this mechanism as well as many monitoring features so we will take a general
look at event messages and how they are built and then we will look at the details
for the various features that use event messages.

Event Messages

Written to specific named queue
Created as LOCAL queues in the default set of objects
Can be redefined

Controlled by ALTER QMGR switch

Message Descriptor
Format = MQFMT_EVENT
‘EVENT ’

Well defined message format
MQCFH header
PCF sub-structures

PCF ParametersPCF Header (MQCFH)

Event Message

SYSTEM.ADMIN.<feature name>.EVENT

ALTER QMGR <type>EV(ENABLED)

N

O

T

E

S

Event Messages - Notes

Event messages are used for various features of MQ and they share a common
mechanism for configuration and format for the emitted events.
As we look at each specific event feature later we will see each event type is
written to a specific queue name which follows the pattern
SYSTEM.ADMIN.<feature name>.EVENT, and is controlled by a switch, an
attribute on ALTER QMGR, usually with ENABLED/DISABLED as the values
(although sometimes there are additional options). The switches also follow a
pattern of <type>EV as the name.
The format of event messages is shown as MQFMT_EVENT (‘EVENT ’)in the
message descriptor (MQMD) which is a PCF header. This means the message
starts with a header using the structure MQCFH. This header is then followed by
1 or more parameter structures which are self-describing sub-structures providing
the data of the actual event message.

Redefining Event Queues

Can be redefined as QREMOTE queues Can be redefined as QALIAS -> TOPIC

QM1

SYSTEM.ADMIN.QMGR.EVENT

QM2

SYSTEM.ADMIN.QMGR.EVENT

QM3

SYSTEM.ADMIN.EVENT

QMGR.EVENT

Events

QMgr

SYSTEM.ADMIN.QMGR.EVENT

MQSUB
‘Events/QMgr’

MQSUB
‘Events/+’

DEFINE SUB(EVENTS)
DESTCLASS(PROVIDED)
DEST(SYSTEM.ADMIN.EVENT)
TOPICSTR(‘Events/+’)

SYSTEM.ADMIN.EVENT

N

O

T

E

S

Redefining Event Queues - Notes

The various event queues are defined as part of the default objects on the queue
manager (on distributed platforms) and in CSQ4INSG CSQINP2 sample (on
z/OS) as LOCAL queues. They can be redefined as REMOTE queues to funnel
all event messages to a central queue manager to process if wished; or redefined
as ALIAS queues pointing at a TOPIC object to cause them to be published. The
queue name just needs to be correct.
In doing this you can also of course funnel the events messages onto a single
queue to have all event types read by the same application without having to
open lots of different event queues.

Management or monitoring tool
Such as Tivoli Omegamon

No general event formatter provided with WMQ

Several SupportPacs available
MO01 (C) - including source code
MS0K (C) - including source code
MS12 (COBOL) - including source code
MS0P – WMQ Explorer plug-in
MO71 – GUI Administrator

Viewing Event Messages

N

O

T

E

S

Viewing Event Messages

In order to view MQ Event messages we would normally expect there to be some
management or monitoring tool to be used. However, event messages are just an
MQ Message with a specific published format (which we will take a look at in a
moment) so writing an application to view them is also possible.
Apart from buying purpose built MQ monitoring tools, there are also a number of
freely available MQ Support Pacs that allow the browsing and formatting of MQ
event messages.
MS0P and MO71 provide graphical tools that will format event messages (among
various other task that they provide).
Whether you buy or download a tool, or write your own application, something
should be consuming the event messages that you configure you queue manager
to emit, and taking appropriate action based on them.

Event Message – PCF Header

PCF Header (MQCFH)
Type

MQCFT_EVENT

StrucLength, Version

Standard fields in all MQ headers

Command

MQCMD_*

Indicates what the event is

A value for each category of event

MsgSeqNumber, Control

Helpful with sets of related events

CompCode, Reason

MQCC_WARNING

MQRC_*

A value for each type of event within the
category

ParameterCount

How many pieces of data will follow

PCF ParametersPCF Header (MQCFH)

Event Message

ControlType MsgSeq
Number

Command
Struc

Length Version
Comp
Code

Reason
Parameter

Count

N

O

T

E

S

Event Message – PCF Header - Notes

We will look at the MQCFH header here and some example (common) sub-
structures, and then for each specific event type later we will see more detail on
the sort of data that follows in the sub-structures.

The Type field tells you that this is an event message (MQCFT_EVENT) since the
PCF Header is actually used for other messages as well. PCF is a format that
allows self-describing messages so it is very useful for lots of things.

The StrucLength and Version fields are common to all MQ defined headers,
allowing future-proofing against changes (extensions) to the structure.

Our first important field is the Command field. This will contain a value that will
indicate what category of event it is, with a defined MQCMD_* constant to use.
This means that even if you have all your event messages aliased to a single
central queue, you can still tell what they are. We will see the value used for the
specific types of events when we come onto them. This is further qualified by
Reason which we will see in a moment.

N

O

T

E

S

Event Message – PCF Header - Notes

MsgSeqNumber and Control are helpful when a single event is written as multiple
messages. MsgSeqNumber contains an incrementing number of the event
message within the set, and Control flags the last messages so you know when
you have all the messages in the set. When a single event maps to a single
message which is what happens most of the time, you will see MsgSeqNumber =
1, and Control = MQCFC_LAST. We will see this used with one of the specific
event types later.

CompCode and Reason indicate the type of event within the category.
CompCode is always MQCC_WARNING, so Reason is the important one.

ParameterCount tells you how much data to expect to see following this PCF
header. The count will vary with event types and sometimes even within event
types.

N

O

T

E

S

PCF Header – C and COBOL

struct tagMQCFH {
MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Version; /* Structure version number */
MQLONG Command; /* Command identifier */
MQLONG MsgSeqNumber; /* Message sequence number */
MQLONG Control; /* Control options */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying completion code */
MQLONG ParameterCount; /* Count of parameter structures */

};

** MQCFH structure
10 MQCFH.

** Structure type
15 MQCFH-TYPE PIC S9(9) BINARY.

** Structure length
15 MQCFH-STRUCLENGTH PIC S9(9) BINARY.

** Structure version number
15 MQCFH-VERSION PIC S9(9) BINARY.

** Command identifier
15 MQCFH-COMMAND PIC S9(9) BINARY.

** Message sequence number
15 MQCFH-MSGSEQNUMBER PIC S9(9) BINARY.

** Control options
15 MQCFH-CONTROL PIC S9(9) BINARY.

** Completion code
15 MQCFH-COMPCODE PIC S9(9) BINARY.

** Reason code qualifying completion code
15 MQCFH-REASON PIC S9(9) BINARY.

** Count of parameter structures
15 MQCFH-PARAMETERCOUNT PIC S9(9) BINARY.

Example parameters

String (MQCFST) field example
Type

MQCFT_STRING
StrucLength
Parameter

MQCA_Q_MGR_NAME for our example
CodedCharSetId (CCSID)

The codepage that the string characters are
represented in

StringLength

How long the string following is
String

The actual data

MQCFST sub-structure

StringType String
Length

CCSID
Struc

Length
Parameter

Integer field example
Type

MQCFT_INTEGER
StrucLength
Parameter

MQIACF_REASON_QUALIFIER
Value

The actual data

MQRQ_*

MQCFIN sub-structure

Type ValueStruc
Length

Parameter

N

O

T

E

S

Example Parameters

We show a couple of example parameters here to give you an idea of the
structure of the data in an event message. We have chosen one of each of the
most common data types, a string parameter and an integer parameter.
The example, the string QMgrName field is used by many different types of event
messages as it records the name of the queue manager generating the event.
Our second example, the integer ReasonQualifier field is used by a number of
event types to further qualify the type of event within a category – we will see one
of the events we look at later using it.

Security Failures

Audit Trail of security access failures
on your queue manager

Queue Manager Attribute AUTHOREV

PCF Header fields
Command

MQCMD_Q_MGR_EVENT

Reasons
MQRC_NOT_AUTHORIZED

Reason Qualifier
MQRQ_CONN_NOT_AUTHORIZED
MQRQ_OPEN_NOT_AUTHORIZED
MQRQ_CLOSE_NOT_AUTHORIZED
MQRQ_CMD_NOT_AUTHORIZED
MQRQ_SUB_NOT_AUTHORIZED
MQRQ_SUB_DEST_NOT_AUTHORIZED

SYSTEM.ADMIN.QMGR.EVENT

ALTER QMGR AUTHOREV(ENABLED)

N

O

T

E

S

Security Failures – Notes

On the distributed platforms, an audit trail of access failures is kept by means of
event messages which are written to the SYSTEM.ADMIN.QMGR.EVENT queue.
You can enable these events to be written by means of the AUTHOREV switch on
ALTER QMGR.
There are several different types of MQRC_NOT_AUTHORIZED events showing
specifically what kind of access was attempted. Each of these types has a
different reason qualifier recorded in the event message.

– MQRQ_CONN_NOT_AUTHORIZED
– MQRQ_OPEN_NOT_AUTHORIZED

– MQPUT1 ==> MQOPEN
– MQRQ_CLOSE_NOT_AUTHORIZED

– For deletion of dynamic queues
– MQRQ_CMD_NOT_AUTHORIZED

– WebSphere MQ MQSC/PCF commands
– MQRQ_SUB_NOT_AUTHORIZED

– subscribe check failed
– MQRQ_SUB_DEST_NOT_AUTHORIZED

– destination queue check failed
and, where applicable, there is information in each event message to show the
user ID and application that made the failed access attempt.

Not Authorized Event Message Details

X

D
est

O
p

en
 O

p
tio

n
s

* Might be Q Name, Process Name (OPEN only), Namelist Name (OPEN only), Sub Name (CLOSE only)

X

X

X

X

X

X

Q
M

g
r

N
am

e

X

X

X

T
o

p
ic S

trin
g

X

X

X

A
d

m
in

 T
o

p
ic N

am
es

X

X

O
b

ject Q
M

g
r

N
am

e

X

X

X

O
b

ject N
am

e *

X

C
o

m
m

an
d

XXXXMQRQ_SUB_DEST_NOT_AUTHORIZED

XXXXMQRQ_SUB_NOT_AUTHORIZED

XMQRQ_CMD_NOT_AUTHORIZED

XXXMQRQ_CLOSE_NOT_AUTHORIZED

XXXXMQRQ_OPEN_NOT_AUTHORIZED

XXXMQRQ_CONN_NOT_AUTHORIZED

O
p

tio
n

s

A
p

p
l

N
am

e

A
p

p
l

T
yp

e

U
ser Id

en
tifier

Reason Qualifier

N

O

T

E

S

Not Authorized Event Message Details - Notes

Much of the contents of the Not Authorized event messages are fairly self-
explanatory, but we will look at a few of the interesting fields in a bit more detail.
Of course you can read about the details of event messages in the “Monitoring
WebSphere MQ” book too.

– http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzax.doc/mo10120_.htm

The not authorised events that are from API calls, all except
MQRQ_CMD_NOT_AUTHORIZED, provide details of the application making the
call as well as the user ID that the application was running under that did not have
the required access. These application identity fields are the same fields you will
see on DISPLAY CONN, APPLTAG and APPLTYPE along with USERID.
MQOPEN and MQSUB authorisation failures will provide the options used on the
verb to allow you to work out what access was attempted on the resource. These
are integer fields that contain all the options and can be decoded most easily
working in hex (or of course using a tool such as in MS0P or MO71 to decode
these for you).

Identifying the Application

Event message contains same info you’d see on
DISPLAY CONN command

APPLTAG
APPLTYPE
USERID (Not Authorized events only)

AMQ8276: Display Connection details.
CONN(3C75FA4B2001BA01)

TYPE(CONN)
PID(9428) TID(1)
APPLTAG(d:\nttools\q.exe) APPLTYPE(USER)
USERID(hughson)
CHANNEL() CONNAME()
CONNOPTS(MQCNO_SHARED_BINDING) XXX

XXX

X

XXX

XXX

XXX

A
p

p
l

N
am

e

A
p

p
l

T
yp

e

U
ser Id

en
tifier

Decoding Options

An integer field containing the options used

Examples

Options (from MQOPEN) 0x00000012
MQOO_OUTPUT 0x00000010
MQOO_INPUT_SHARED 0x00000002

Options (from MQSUB) 0x0000000A
MQSO_CREATE 0x00000002
MQSO_DURABLE 0x00000008

XX

X

X

D
est

O
p

en
 O

p
tio

n
s

O
p

tio
n

s

FRUIT

Topic Security

Authority check on topic objects
“Walk up the tree”
May be more than one check
Failed event records all topic
objects used for authority check

Authority check on destination
queue

When not using MQSO_MANAGED
Check is for PUT to that queue

Price

Fruit

Apples Oranges

SYSTEM.BASE.TOPIC

MQSUB
‘Price/Fruit/Apples’
Using Q1
MQGET (Q1)

Q1

X

X

X

T
o

p
ic S

trin
g

X

X

X

A
d

m
in

 T
o

p
ic N

am
es

N

O

T

E

S

Topic Security

When MQOPENing a topic (MQOT_TOPIC) for MQOO_OUTPUT – that is, in
order to publish, or when making an MQSUB call to subscribe to a topic, a
security check is done to see if your user ID has authority to use that topic.
In our example we have called MQSUB at the point in the topic tree,
“Price/Fruit/Apples”. There is no topic object at this point in the topic tree, so to
find the profile we need to check authorities against we walk up the topic tree to
find a node which does have a topic object. The next point is “Price/Fruit”. This
does have a topic object, FRUIT, so we will check that this user ID has subscribe
authority on the profile for the FRUIT topic. If that user ID does have authority, our
search stops there. If it does not, we carry on searching up the topic tree and will
check the SYSTEM.BASE.TOPIC to see if this user ID has subscribe authority
there.
An additional authorisation check is done for an MQSUB call when the application
wishes to use a specific destination queue (i.e. is not using the
MQSO_MANAGED option). In this case we also check that this user ID has
authority to PUT to that destination queue.

Commands Issued

Audit Trail of MQSC/PCF commands
issued on your queue manager

Queue Manager Attribute CMDEV
NODISPLAY

Command Failed => No event

PCF Header fields
Command

MQCMD_COMMAND_EVENT

Possible Reasons

MQRC_COMMAND_MQSC

MQRC_COMMAND_PCF

Distributed platform Command events in V7.0.1
MS0P contains a limited Command Event generator for PCF admin
For older Distributed systems

SYSTEM.ADMIN.COMMAND.EVENT

ALTER QMGR CMDEV(ENABLED)

N

O

T

E

S

Commands Issued - Notes

An audit trail of commands issued is kept by means of event messages which are
written to the SYSTEM.ADMIN.COMMAND.EVENT queue. You can enable these
events to be written by means of the CMDEV switch on ALTER QMGR.
You can choose to record all commands that are issued, or perhaps more
usefully, all commands except DISPLAY commands (PCF Inquire commands), so
that you only capture a record of those potentially destructive or interesting
commands. This is done using CMDEV(NODISPLAY).
If the command issued failed, for example a syntax error, then no command event
is generated.
The PCF Header of a command event message will record the Command field as
MQCMD_COMMAND_EVENT and can have one of two possible Reasons,
MQRC_COMMAND_MQSC or MQRC_COMMAND_PCF. The next page will
show the differences.
Command events are available on z/OS in V6 and Distributed platforms in V7.0.1.
SupportPac MS0P also provides an API Exit that can be used to log all
commands sent to the Command Server on the Distributed platforms for earlier
versions.

Command Event Message Details

Command Context

* Either PCF message as it was submitted, or text of MQSC command

X

E
ven

t A
p

p
l

T
yp

e

X

X

X

X

X
E

ven
t U

ser ID

X

X

X

X

X

C
o

m
m

an
d

X

X

X

X

X

C
o

m
m

an
d

 D
ata *

X

E
ven

t A
p

p
l

N
am

e

X

E
ven

t A
p

p
l

O
rig

in

XMQEVO_OTHER

XMQEVO_INTERNAL

XXXMQEVO_MSG

XMQEVO_INIT

XMQEVO_CONSOLE

E
ven

t Id
en

tity D
ata

E
ven

t A
cco

u
n

tin
g

 T
o

ken

E
ven

t Q
M

g
r

Event Origin

N

O

T

E

S

Command Event Message Details - Notes

Much of the contents of the Command event messages are fairly self-explanatory,
but we will look at a few of the interesting fields in a bit more detail. Of course you
can read about the details of event messages in the “Monitoring WebSphere MQ”
book too.

– http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzax.doc/mo10120_.htm

The contents of the command event message varies depending on how the
command was issued. If the command was a PCF message then the content of
the input PCF message is part of the command event. Alternatively, if the
command was an MQSC message then this text string will be found in the event
message instead of the PCF input message.
If the command was issued by putting a message on the command server queue
(MQEVO_MSG) then there will be more application identifying information than in
other cases because the Message Descriptor (MQMD) of the command message
written by the application contains lots of extra data.
In all cases you will get the user ID issuing the command, the queue manager
where the command was entered, and one of the two aforementioned command
data variants.

Configuration Changes

Audit trail of changes to the configuration
of the queue manager.

Commands acting on objects
MQSET calls

Queue Manager Attribute CONFIGEV

Create a base-line view with
REFRESH QMGR

PCF Header fields
Command

MQCMD_CONFIG_EVENT
Possible Reasons

MQRC_CONFIG_CHANGE_OBJECT

MQRC_CONFIG_CREATE_OBJECT

MQRC_CONFIG_DELETE_OBJECT

MQRC_CONFIG_REFRESH_OBJECT

SYSTEM.ADMIN.CONFIG.EVENT

ALTER QMGR CONFIGEV(ENABLED)

REFRESH QMGR TYPE(CONFIGEV)
OBJECT(ALL) NAME(*)

N

O

T

E

S

Configuration Changes - Notes

An audit trail of changes to the queue manager configuration is kept by means of
event messages which are written to the SYSTEM.ADMIN.CONFIG.EVENT
queue. You can enable these events to be written by means of the CONFIGEV
switch on ALTER QMGR.
These events will be generated when a DEFINE, ALTER or DELETE command
acts upon an object, or an MQSET command is used.
A base-line picture of the current queue manager configuration can be created by
using the REFRESH QMGR TYPE(CONFIGEV) command which will create an
event message for every object in the queue manager. Since this could be a
heavyweight operation if you have a lot of objects, you can break it down into
smaller sets of objects using the NAME and OBJECT qualifiers on the command.
The PCF Header of a configuration event message will record the Command field
as MQCMD_CONFIG_EVENT and can have one of four possible Reasons,
MQRC_CONFIG_CHANGE_OBJECT, MQRC_CONFIG_CREATE_OBJECT or
MQRC_CONFIG_DELETE_OBJECT for the respective MQSC or PCF commands
that you might issue upon an object or MQRC_CONFIG_REFRESH_OBJECT for
those event messages written when creating the base-line picture. The next page
will show the details.
Config events are available on z/OS in V5.3 and Distributed platforms in V7.0.1.

Config Event Message Details

All config events
Command Context just as
Command Event Message Details
Object Type
Object Name
Disposition (z/OS only)

PCF Header
When 2 event messages
MsgSeqNumber = 1, 2
Control = MQCFC_NOT_LAST,

MQCFC_LAST

MQRC_CONFIG_CHANGE_OBJECT
2 event messages
Attributes before change
Attributes after change

MQRC_CONFIG_CREATE_OBJECT
1 event message
Attributes after create

MQRC_CONFIG_DELETE_OBJECT
1 event message
Attributes before deletion

MQRC_CONFIG_REFRESH_OBJECT
1 event message
Current attributes of object

N

O

T

E

S

Config Event Message Details - Notes

Much of the contents of the Config event messages contain object attributes.
These are PCF sub-structures when one issues a PCF command to make or alter
an object, and exactly the same sub-structures are used in these event
messages. Of course you can read about the details of event messages in the
“Monitoring WebSphere MQ” book too.

– http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzax.doc/mo10120_.htm

The contents of the command event message varies depending on how the
command was issued just as with command events. If the command was issued
by putting a message on the command server queue (MQEVO_MSG) then there
will be more application identifying information than in other cases because the
Message Descriptor (MQMD) of the command message written by the application
contains lots of extra data.
In all cases you will get the user ID issuing the command, the queue manager
where the command was entered.
In the specific case of the MQRC_CONFIG_CHANGE_OBJECT, you will get two
messages, one containing the object attributes before the change and one
containing those after the change. These will be indicated using the
MsgSeqNumber field and the Control field in the PCF Header.

Combining Command and Config Events

ALTER Q(FRED) MAXDEPTH(1)
Command Event
Before Change Config Event
After Change Config Event

SYSTEM.ADMIN.CONFIG.EVENTSYSTEM.ADMIN.COMMAND.EVENT

Correl ID = 1234Correl ID = 1234

ALTER QMGR
CMDEV(NODISPLAY)
CONFIGEV(ENABLED)

N

O

T

E

S

Combining Command and Config Events - Notes

If you have both Command events and Configuration events enabled, then when
an object is changed, the event messages will share the same correlation ID in
their MQMDs.

Start and Stop Events

Notification of queue manager start and stop

Queue Manager Attribute STRSTPEV
DEFPSIST of event queue

PCF Header fields
Command

MQCMD_Q_MGR_EVENT

Possible Reasons

MQRC_Q_MGR_ACTIVE

MQRC_Q_MGR_NOT_ACTIVE

Reason Qualifier

MQRQ_Q_MGR_STOPPING

MQRQ_Q_MGR_QUIESCING

SYSTEM.ADMIN.QMGR.EVENT

ALTER QMGR STRSTPEV(ENABLED)

X

X

Q
M

g
r

N
am

e

XMQRC_Q_MGR_NOT_ACTIVE

MQRC_Q_MGR_ACTIVE

R
easo

n
 Q

u
alifier

Reason

N

O

T

E

S

Start and Stop Events - Notes

Whenever a queue manager starts or stops, an event messages is written to the
SYSTEM.ADMIN.QMGR.EVENT queue. You can enable these events to be
written by means of the STRSTPEV switch on ALTER QMGR.
The PCF Header of a start or stop event message will record the Command field
as MQCMD_Q_MGR_EVENT and can have two possible Reasons where the
MQRC_Q_MGR_NOT_ACTIVE can have two possible Reason Qualifiers as
shown.
A stop event is only recorded if the DEFPSIST attribute of the
SYSTEM.ADMIN.QMGR.EVENT queue is defined as persistent.

Channel Events

Notification of channel starts, stops and errors,
including SSL errors

Queue Manager Attributes CHLEV and SSLEV
EXCEPTION

Server-connection channels do not cause
start or stop events

PCF Header fields
Command

MQCMD_CHANNEL_EVENT

Possible Reasons
MQRC_CHANNEL_ACTIVATED
MQRC_CHANNEL_NOT_ACTIVATED
MQRC_CHANNEL_STARTED
MQRC_CHANNEL_STOPPED
MQRC_CHANNEL_STOPPED_BY_USER
MQRC_CHANNEL_CONVERSION_ERROR

MQRC_CHANNEL_SSL_ERROR
MQRC_CHANNEL_SSL_WARNING

Reason Qualifier
MQRQ_CHANNEL_STOPPED_OK
MQRQ_CHANNEL_STOPPED_ERROR
MQRQ_CHANNEL_STOPPED_RETRY
MQRQ_CHANNEL_STOPPED_DISABLED

MQRQ_SSL_HANDSHAKE_ERROR
MQRQ_SSL_CIPHER_SPEC_ERROR
MQRQ_SSL_PEER_NAME_ERROR
MQRQ_SSL_CLIENT_AUTH_ERROR
MQRQ_SSL_UNKNOWN_REVOCATION

SYSTEM.ADMIN.CHANNEL.EVENT

ALTER QMGR CHLEV(EXCEPTION)
SSLEV(ENABLED)

N

O

T

E

S

Channel Events - Notes

Whenever a channel does something noteworthy, an event messages is written to
the SYSTEM.ADMIN.CHANNEL.EVENT queue. You can enable these events to
be written by means of the CHLEV switch on ALTER QMGR. Additionally, if you
are using SSL on your channels, you can get detailed event messages on the
reason for any SSL failures by enabling SSL error events by means of the SSLEV
switch on ALTER QMGR. These are written to the same event queue.
You can choose to record all channel events that are issued, or perhaps more
usefully, all the ones relating to error situations. This is done using
CHLEV(EXCEPTION).
The PCF Header of a channel event message will record the Command field as
MQCMD_CHANNEL_EVENT and can have several possible Reasons and
Reason Qualifiers as shown.

Channel Auto-definition Events

Notification of attempts to automatically
define channels

Queue Manager Attributes
CHAD
CHADEV
CHADEXIT

PCF Header fields
Command

MQCMD_CHANNEL_EVENT

Possible Reasons

MQRC_CHANNEL_AUTO_DEF_ERROR

MQRC_CHANNEL_AUTO_DEF_OK

SYSTEM.ADMIN.CHANNEL.EVENT

ALTER QMGR CHAD(ENABLED)
CHADEV(ENABLED)
CHADEXIT(exit-name)

N

O

T

E

S

Channel Auto-defintion Events - Notes

If you have enabled channel auto-definition by means of the CHAD switch on
ALTER QMGR, then an inbound channel connection who wishes to use a channel
that is not defined will cause it to be created (modeled off SYSTEM.AUTO.*
channels). You can further configure this behaviour with an exit whose name is
specified in the CHADEXIT attribute, and you can also have events emitted
whenever an auto-definition of a channel is attempted.
Whenever a channel is automatically defined, an event messages is written to the
SYSTEM.ADMIN.CHANNEL.EVENT queue. You can enable these events to be
written by means of the CHADEV switch on ALTER QMGR. The PCF Header of a
channel event message will record the Command field as
MQCMD_CHANNEL_EVENT and can have one of two possible Reasons,
MQRC_CHANNEL_AUTO_DEF_OK or
MQRC_CHANNEL_AUTO_DEF_ERROR.

Channel Event Message Details

X

X

C
h

an
n

el T
yp

e

XXXXXMQRC_CHANNEL_AUTO_DEF_ERROR

XXXMQRC_CHANNEL_AUTO_DEF_OK

XXXXMQRC_CHANNEL_SSL_WARNING

X

S
S

L
 R

etu
rn

 C
o

d
e

XXXXXXMQRC_CHANNEL_CONV_ERROR

XXXXXXMQRC_CHANNEL_SSL_ERROR

XXXXXMQRC_CHANNEL_STOPPED_BY_USER

XXXXXXXMQRC_CHANNEL_STOPPED

XXXXMQRC_CHANNEL_STARTED

A
u

x E
rro

r D
ata In

t
1/2

X

X

Q
M

g
r

N
am

e

F
o

rm
at

S
S

L
 H

an
d

sh
ake S

tag
e

A
u

x E
rro

r D
ata S

trin
g

 1/2/3

C
o

n
versio

n
 R

easo
n

 C
o

d
e

S
S

L
 P

eer N
am

e

XXXMQRC_CHANNEL_NOT_ACTIVATED

XXXMQRC_CHANNEL_ACTIVATED

E
rro

r Id
en

tifier

C
o

n
n

ectio
n

 N
am

e

X
m

itQ
N

am
e

C
h

an
n

el N
am

e

Reason

N

O

T

E

S

Channel Event Message Details - Notes

Much of the contents of the Channel event messages are fairly self-explanatory,
but we will look at a few of the interesting fields in a bit more detail. Of course you
can read about the details of event messages in the “Monitoring WebSphere MQ”
book too.

– http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzax.doc/mo10120_.htm

The channel events all provide details of the channel in questions. These channel
detail fields are the same fields you will see on DISPLAY CHSTATUS, the
channel name, XMITQ and CONNAME.
The events that report channels failing due to an error, which are probably the
most interesting ones for most people, include some interesting fields that it is
helpful to know how to interpret.

Identifying the Channel

Event message contains same info you’d see on
DISPLAY CHSTATUS command

Channel name
XMITQ
CONNAME

AMQ8417: Display Channel Status details.
CHANNEL(NT1MAH.TO.NT2MAH) CHLTYPE(SDR)
CONNAME(127.0.0.1(1502)) CURRENT
RQMNAME(NT2MAH) STATUS(RUNNING)
SUBSTATE(MQGET) XMITQ(NT2MAH)

XX

XX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

C
o

n
n

ectio
n

 N
am

e

X
m

itQ
N

am
e

C
h

an
n

el N
am

e

Decoding Error Information

Error Identifier
Example
0x20009208 Receive Failed

Use mqrc tool
Can enter number in
hex or decimal

Auxiliary data
Contains data that would be
seen in the inserts of the
equivalent error log message

XX

X

XXX

A
u

x E
rro

r D
ata S

trin
g

 1/2/3

A
u

x E
rro

r D
ata In

t
1/2

E
rro

r Id
en

tifier

C:\>mqrc 0x20009208

536908296 0x20009208 rrcE_RECEIVE_FAILED

C:\>mqrc AMQ9208

MESSAGE:
Error on receive from host <insert one>.

EXPLANATION:
An error occurred receiving data from <insert one>
over <insert two>. This may be due to a
communications failure.

ACTION:
The return code from the <insert two><insert three>
call was 1111 (X'8AE'). Record these values and tell
the systems administrator.

Application errors using resources

Notification of application failures to use
local or remote queues, inhibited resources

Queue Manager Attributes
LOCALEV
REMOTEEV
INHIBITEV

PCF Header fields
Command

MQCMD_Q_MGR_EVENT

Possible Reasons
MQRC_ALIAS_BASE_Q_TYPE_ERROR
MQRC_UNKNOWN_ALIAS_BASE_Q
MQRC_UNKNOWN_OBJECT_NAME

MQRC_DEF_XMIT_Q_TYPE/USAGE_ERROR
MQRC_Q_TYPE_ERROR
MQRC_REMOTE_Q_NAME_ERROR
MQRC_XMIT_Q_TYPE/USAGE_ERROR
MQRC_UNKNOWN_DEF_XMIT_Q
MQRC_UNKNOWN_REMOTE_Q_MGR
MQRC_UNKNOWN_XMIT_Q

MQRC_GET_INHIBITED
MQRC_PUT_INHIBITED

Reflects an MQRC also given back to the
application

Handy when application forgets to check!

SYSTEM.ADMIN.QMGR.EVENT

ALTER QMGR LOCALEV(ENABLED)
REMOTEEV(ENABLED)
INHIBITEV(ENABLED)

N

O

T

E

S

Application errors using resources – Notes

These events reflects error that are also returned to applications. They indicate
problems where either the object that the application needs to use is defined
incorrectly, or the application is using the wrong name of an object, perhaps more
likely is cases such as MQRC_UNKNOWN_OBJECT_NAME.
The inhibit events reflect a problem where an application has attempted to use a
resource which is inhibited for the operation required. MQRC_PUT_INHIBIT
events are created for PUT(DISABLED) queues and PUB(DISABLED) topics.
These events can also be generated by internal operations in the queue manager,
such as the writing of an event message. In case it would reflect the ReplyToQ
and ReplyToQMgr fields of an originating application message containing
incorrect information or pointing at a resource that is not correctly defined.

Local/Remote/Inhibit Event Message Details

* Might be Q Name, Process Name, Namelist Name or Topic Name

XXXXXXMQRC_PUT_INHIBITED

XXXXMQRC_GET_INHIBITED

XXXXXXMQRC_UNKNOWN_XMIT_Q

XXXXXMQRC_UNKNOWN_REMOTE_Q_MGR

XXXXXXMQRC_UNKNOWN_DEF_XMIT_Q

XXXXXXMQRC_XMIT_Q_USAGE_ERROR

XXXXXXXMQRC_XMIT_Q_TYPE_ERROR

X

X

B
ase O

b
ject N

am
e

XXXXXMQRC_Q_TYPE_ERROR

XXXXXMQRC_REMOTE_Q_NAME_ERROR

XXXXXXMQRC_DEF_XMIT_Q_USAGE_ERROR

XXXXXXXMQRC_DEF_XMIT_Q_TYPE_ERROR

XXXXXMQRC_UNKNOWN_OBJECT_NAME

X

Q
 T

yp
e

X

X

Q
M

g
r

N
am

e

T
o

p
ic S

tirn
g

X

X

A
p

p
l

T
yp

e

X

X

A
p

p
l

N
am

e

XXXMQRC_UNKNOWN_ALIAS_BASE_Q

XXMQRC_ALIAS_BASE_Q_TYPE_ERROR

B
ase T

yp
e

X
m

it
Q

 N
am

e

O
b

ject Q
M

g
r

N
am

e

O
b

ject N
am

e *

Reason

N

O

T

E

S

Local/Remote/Inhibit Event Message Details - Notes

Much of the contents of these queue manager event messages are fairly self-
explanatory, but we will look at a few of the interesting fields in a bit more detail.
Of course you can read about the details of event messages in the “Monitoring
WebSphere MQ” book too.

– http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzax.doc/mo10120_.htm

These events are all caused by some application making an MQ API call (mostly
MQOPENs) which failed. So they all provide details of the application making the
call. These application identity fields are the same fields you will see on DISPLAY
CONN, APPLTAG and APPLTYPE. We saw an example of this earlier with the
Not Authorized events.
When diagnosing an issue reported by one of these events, either the application
has coded the wrong thing, or there is an administrative definition missing or
incorrect that the application needs to use. You can see the details of exactly
what the application coded in the MQOD.ObjectName and
MQOD.ObjectQMgrName fields by looking at the equivalent fields in the event
message.

Application MQOD details

MQOPEN API call

MQOD describes the object to open
ObjectName
ObjectQMgrName

MQMD describes the object to open for a Response/Report message
ReplyToQ
ReplyToQMgr

Event message data provides these

MQOD ObjDesc = {MQOD_DEFAULT};

ObjDesc.ObjectType = MQOT_Q;
strncpy(ObjDesc.ObjectName,

“MY.APP.QUEUE”,
MQ_Q_NAME_LENGTH);

XX

XX

XX

XX

XX

XX

XX

O
b

ject Q
M

g
r

N
am

e

O
b

ject N
am

e *

Queue Service Interval Events

Notification of whether queues are being
processed in a timely manner

MQGETs or CLEAR QLOCAL

Queue Manager Attribute PERFMEV

Queue Attributes
QSVCIEV – Event switch
QSVCINT – Interval

PCF Header fields
Command

MQCMD_PERFM_EVENT

Possible Reasons
MQRC_Q_SERVICE_INTERVAL_HIGH
MQRC_Q_SERVICE_INTERVAL_OK

SYSTEM.ADMIN.PERFM.EVENT

ALTER QMGR PERFMEV(ENABLED)

ALTER QLOCAL(q-name)
QSVCIEV(HIGH)
QSVCINT(10000)

N

O

T

E

S

Queue Service Interval Events – Notes

Queue Service Interval events give you notification that a queue is not being
processed in a timely enough manner. You can set the interval on the queue (in
milliseconds) for how quickly you expect gets to be issued after some messages
are there to be processed, and if a get hasn’t been used within that interval you
will get an event.
A CLEAR QLOCAL command will also count as a ‘get’ for the purposes of these
events.
Both these High/Low events and Queue Depth High/Low events work in co-
operation with each other as we will see in a moment.

Queue Depth Events

Notification of when queues start to
fill up with messages

Queue Manager Attribute PERFMEV

Queue Attributes
QDPHIEV – High Depth Event Switch
QDPLOEV – Low Depth Event Switch
QDPMAXEV – Max Depth Event Switch

QDEPTHHI - % of Max Depth
QDEPTHLO - % of Max Depth
MAXDEPTH

PCF Header fields
Command

MQCMD_PERFM_EVENT

Possible Reasons
MQRC_Q_DEPTH_HIGH
MQRC_Q_DEPTH_LOW
MQRC_Q_FULL

SYSTEM.ADMIN.PERFM.EVENT

ALTER QMGR PERFMEV(ENABLED)

ALTER QLOCAL(q-name) MAXDEPTH(1000)
QDEPTHHI(80) QDEPTHLO(20)
QDPHIEV(ENABLED)

N

O

T

E

S

Queue Depth Events – Notes

Queue Depth events give you prior warning that your queue is getting full. A
queue full event of course tells you that the queue is full – too late!! However, you
can get prior warning by using the Queue High event, and setting the point you
wish to be notified as a percentage of the maximum depth of the queue.
There are also Queue Low events which tell you when the panic is over and the
alarms can be turned off again!
Both these High/Low events and Queue Service Interval High/Low events work in
co-operation with each other as we will see in a moment.

Performance Event Message Details

Performance Event Statistics
are reset

A performance event is emitted
The queue manager restarts
Reset Queue Statistics (PCF)
command is issued
RESET QSTATS (MQSC)
command is issued (z/OS only)

Time Since Reset
Shows time of last one of the
above actions

Statistics

XXXXXXMQRC_Q_FULL

XXXXXXMQRC_Q_DEPTH_LOW

XXXXXXMQRC_Q_DEPTH_HIGH

X

X

M
sg

D
eq

C
o

u
n

t

X

X

Q
M

g
r

N
am

e

XXXXMQRC_Q_SERVICE_INTERVAL_OK

XXXXMQRC_Q_SERVICE_INTERVAL_HIGH
M

sg
E

n
q

C
o

u
n

t

H
ig

h
 Q

 D
ep

th

T
im

e S
in

ce R
eset

Q
 N

am
e

Reason

N

O

T

E

S

Performance Event Message Details – Notes

So this is not the most interesting table we’ve seen today. All these different event
messages have exactly the same content. What is perhaps more interesting is the
way these events operate which we will look at on the next page.
Note that the statistics that are provided as part of a performance event are reset
are various points, when a performance event is emitted; when the queue
manager restarts; and when a command is issued to reset the statistics. The Time
Since Reset parameter in the event message details when the last one of these
happens. If no reset has happened it will contain the time of the last event
message.

The Highs and Lows of Performance Events

ALTER QMGR
PERFMEV(ENABLED)

ALTER QLOCAL(q-name)
MAXDEPTH(1000)
QDEPTHHI(80)
QDEPTHLO(20)
QDPHIEV(ENABLED)

Queue High Event emitted
Queue High Disabled
Queue Low Enabled
Queue Full Enabled

Queue High Event emitted
Queue High Disabled
Queue Low Enabled
Queue Full Enabled

Queue Low Event emitted
Queue High Enabled
Queue Low Disabled
Queue Full Enabled

Queue Low Event emitted
Queue High Enabled
Queue Low Disabled
Queue Full Enabled

Queue Full Event emitted
Queue Full Disabled

N

O

T

E

S

The Highs and Lows of Performance Events -
Notes

Queue Service Interval and Queue Depth events are unusual compared to the
other events we have looked at in that they operate in pairs. There is a High event
which alerts the monitor of a problem, a slow processing application or backlog of
messages, and then when the problem is solved, and the queue is being serviced
in a timely manner again, or the depth has returned to a nice low value, the
corresponding Low event is emitted.
This means that only one of the High or Low event from the pair is set at any one
time and when the event is generated, let’s say the High one, then the High event
switch is disabled and the Low event switch is enabled. The reverse happens
when the Low event is reached.
For Depth events there is also the Queue Full event to consider. This is
automatically switched on when the Queue High state is reached. There isn’t an
equivalent event for the Queue Service Interval pair though.

Accounting Messages

Collects information about the applications
which connect to the Queue Manager

Overall
Per Queue

Queue Manager Attribute ACCTINT

Overall MQI Accounting
Queue Manager Attribute ACCTMQI

Queue Accounting
Queue Manager Attribute ACCTQ
Queue Attribute ACCTQ

PCF Header fields
Command

MQCMD_ACCOUNTING_MQI – overall information

MQCMD_ACCOUNTING_Q – queues message

SYSTEM.ADMIN.ACCOUNTING.QUEUE

ALTER QMGR ACCTINT(1800)
ACCTMQI(ON) ACCTQ(ON)

ALTER QLOCAL(q-name)
ACCTQ(QMGR)

N

O

T

E

S

Accounting Messages – Notes

Accounting Monitoring Data collects information about the applications which
connect to the Queue Manager. This data, when enabled by means of the
ACCTMQI switch on ALTER QMGR, is written in the form of PCF records to the
SYSTEM.ADMIN.ACCOUNTING.QUEUE and can be post-processed to give
information on the activity of each application connected. The PCF formatted
message is written upon MQDISC (or at regular intervals for long running tasks,
controlled by the ACCTINT attribute on ALTER QMGR).
As well as the standard collection details, detailed queue information for each
connection may also be collected. Written at the same time as the standard
accounting data collection, a number of PCF formatted messages may we written
which includes accounting information for each queue opened by the connection
(up to 100 queue details per message). The queues that this information is written
for is controlled by the ACCTQ attribute on queues and on the queue manager
(providing a way to switch on and off for multiple queues at once).
The PCF Header of an accounting data message will record the Command field
as MQCMD_ACCOUNTING_MQI for the main accounting information and
MQCMD_ACCOUNTING_Q for the additional messages written for queues.

Statistics Messages

Collects information about WebSphere MQ resources
Queue Manager
Per Queue
Per Channel

Queue Manager Attribute STATINT

Overall MQI Statistics
Queue Manager Attribute STATMQI

Queue and Channel Statistics
Queue Manager Attributes STATQ,
STATCHL and STATACLS
Queue Attribute STATQ
Channel Attribute STATCHL

PCF Header fields
Command

MQCMD_STATISTICS_MQI

MQCMD_STATISTICS_Q

MQCMD_STATISTICS_CHANNEL

SYSTEM.ADMIN.STATISTICS.QUEUE

ALTER QMGR STATINT(1800) STATMQI(ON)
STATQ(ON) STATCHL(HIGH)
STATACLS(QMGR)

ALTER QLOCAL(q-name) STATQ(QMGR)

ALTER CHL(chl-name) CHLTYPE(SDR)
STATCHL(QMGR)

N

O

T

E

S

Statistics Messages – Notes

Statistics Monitoring Data collects information about WebSphere MQ resources
and writes this information at configured intervals (using the STATINT attribute on
ALTER QMGR) to the SYSTEM.ADMIN.STATISTICS.QUEUE. This data, written
in the form of PCF records, can be post-processed to give information on the
activity of the system.
Data collection is split into 3 classes, statistics based on the activity of the whole
system; statistics on the activity of the queue (per queue); and statistics on the
activity of the channel (per channel).
The PCF Header of an accounting data message will record the Command field
as MQCMD_STATISTICS_MQI for the activity of the whole system;
MQCMD_STATISTICS_Q for the per queue activity and
MQCMD_STATISTICS_CHANNEL for the per channel activity.

Accounting Message Details

Connection Details (application name /
process Id / connection type / connect time)

message sizes: persistent / non-persistent

bytes counts: persistent / non-persistent

message counts: persistent / non-persistent

MQPUT / MQGET / MQGET (browse)

API counts (MQOPEN / MQCLOSE /
MQGET / MQPUT / ...)

MQCMD_ACCOUNTING_MQI

Queue details: name, type

MQGET(browse): count, total bytes, msg-
sizes (min / max) (persistent / non-
persistent)

MQGET details: count, total bytes, msg-size
(min / max), time-on-queue (min / avg / max)
(persistent / non-persistent)

MQPUT details: count, total bytes, msg-sizes
(min / max) (persistent / non-persistent)

Open details: first open time, last close time

MQCMD_ACCOUNTING_Q

Statistics Message Details

API counts for each of the MQ API's (MQCONN /
MQDISC / MQPUT / MQGET/ ...)

Total message/bytes got from queues (persistent /
non-persistent messages)

Total message/bytes put to queues (persistent /
non-persistent messages)

MQCMD_STATISTICS_MQI

Number of PUT retries

Number of messages transferred (persistent
/ non-persistent)

Batch Info (total / number full / avg size)

Exit Times (min / avg / max)

Network times (min / avg / max) : measured
on heartbeats

Number of bytes transferred (persistent /
non-persistent)

MQCMD_STATISTICS_CHANNEL

Minimum / Maximum depth of queue

Total byte counts for GET / PUT / BRWS
(persistent / non-persistent)

API counts for GET / PUT / BRWS
(persistent / non-persistent)

Average time-on-queue for messages
retrieved from the queue

MQCMD_STATISTICS_Q

